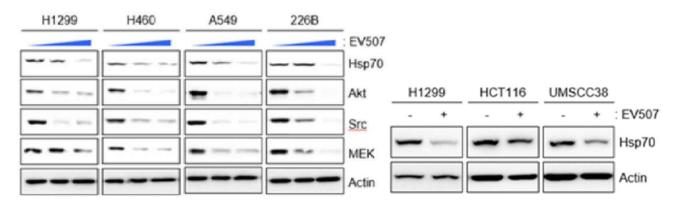


인돌로퀴나졸리딘 알칼로이드를 함유하는 열충격단백질70 타겟 항암용 조성물

소속 서울대학교 약학대학

연구자 이호영 교수

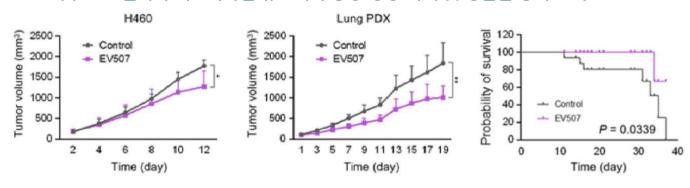
기술 개요


• 항암 활성을 갖는 신규한 인돌로퀴나졸리딘 알칼로이드(indologuinazolidine alkaoloid)를 제조 하고, 이를 처리함으로써 암 세포의 증식을 억제

기술 특장점

- 여러 암세포에서 과발현되어 있는 열 충격 단백질(Hsp70)은 새로운 항암제 개발 표적으로 여겨지고 있음
- 여러 Hsp70 억제제가 개발 중이나, 대부분 전임상 단계에 그치고 있어 효과적인 Hsp70 억제제의 개발이 필요한 실정임
- → 본 발명에서는 기존에 알려진 인돌로퀴나졸리딘 알칼로이드 화합물인 에보디아민의 항암 및 암줄기세포 억제작용의 새로운 기전으로 Hsp70 억제 효능을 확인함
- 본 발명의 인돌로퀴나졸리딘 알칼로이드는 종양의 성장을 억제하고, HSP70 단백질 발현과 암 세포의 콜로니 형성 능력을 억제하며, 암세포주 이종이식 및 화자 유래 암 이종이식 마우스 모델에서 종양의 성장을 억제시킬 수 있음
- 또한 페메트렉시드, 시스플라틴, 및 파클리탁셀 등의 약제 내성 암세포에 대해서도 성장을 억제하는 바, 다양한 암의 예방 및 치료에 폭 넓게 사용 가능함

효과 실험


▶ 에보디아민 유도체의 Hsp70 및 클라이언트 단백질 발현 억제 효과

• 여러 폐암세포에 에보디아민 유도체를 처리한 경우 Hsp70 단백질 및 Hsp70/Hsp90 client 단백질(Akt, Src, 및 MEK)의 발현이 뚜렷하게 감소됨을 확인

▶ 마우스 모델에서 에보디아민 유도체의 종양 성장 억제 및 생존율 증가 효과

본 발명의 에보디아민 유도체는 대조군과 비교하여 유의하게 종양 성장을 억제하였으며, 마우스 사멸이 유의적으로 감소됨

시장 동향

- 글로벌 항암제 시장은 2022년 1,960억 달러에서 2027년 3,750억 달러로 최근 5년간(2018~2022년) 연평균 13.2%의 성장률을 보임
- 2023년 국내 신약 개발 파이프라인 조사 결과에서도 항암제가 약 35%(578개)를 차지
- 이 중 표적항암제가 254개로 전체의 44%를 차지하고 있으며, 면역항암제(228개, 40%), ADC 항암제(42개, 7%), 대사항암제(29개, 5%) 등이 뒤를 잇고 있음
- 표적 항체치료제는 면역 이외의 기전에 관여하는 항암제로, 질환 표적에 맞춰 항체 약물 접합체(ADC), 표적 단백질분해(TPD), 이중항체, 유전자치료제 등 맞춤 기술을 확보하는 방식을 이용하고 있음

특허 포트폴리오

국가	출원번호	출원일	권리상태	
KR	2022-0020404	2022.02.16	심사중	
US	18/277637	2023.08.17	심사중	
PCT	PCT/KR2022/002316	2022.02.17	-	

기술 개발 단계

기초연구 단계		실험 단계		시작품 단계		실용화 단계		사업화
1단계	2단계	3단계	4단계	5단계	6단계	7단계	8단계	9단계
기본 원리 발견	기술개념적 용분야 확립		Working Model 개발 (연구실)	Working Model 개발 (유사환경)	프로토 타입 개발	시제품 제작 (실제환경)	상용제품 시 험평가 신뢰성 검증	상용제품 생산